Lösungen: Säuren und Basen II (87-94)

- 1a. Die Lösung dieses Salzes besteht aus hydratisierten K⁺- und CO₃²-Ionen. Die K⁺- lonen wirken weder als Säuren noch als Basen. Sie haben demzufolge keinen Einfluss auf den pH-Wert. Die Carbonat-Ionen reagieren gemäss der Säure-Basen-Tabelle als Base. Der pK_b-Wert ist 3,75. Folglich wird der pH-Wert zwischen 7 und 14 liegen.
- b. Für die Na⁺-Ionen gilt das gleiche wie für die K⁺-Ionen. Das H₂PO₄⁻-Ion ist ein Ampholyt und kann daher sowohl als **Säure** wie auch als **Base** reagieren. Der pK_b-Wert (= 11,88) ist grösser als der pK_s-Wert (= 7,21). Demzufolge ist diese Substanz sowohl eine **schwache Säure** wie auch eine **schwache Base**. Aber die Fähigkeit als Säure zu wirken ist trotzdem noch bedeutend stärker als die Basenfunktion, da der pK_b-Wert grösser ist. Folglich wird der pH-Wert zwischen 0 und 7 liegen.
- c. Analoge Erklärung wie bei Aufgabe b. Nur sind hier die Verhältnisse umgekehrt. Da der pK_b -Wert (= 6,79) von HPO_4^{2-} kleiner ist als der pK_s -Wert (= 12,67) ist der pH-Wert grösser als 7.
- d. Der pH-Wert einer reinen NaCl-Lösung ist 7. Das Kation ist neutral (s/Antwort b). Das Cl $\bar{}$ -lon ist zwar eine Base. Nur ist sein pK_b -Wert (ca. 21) noch bedeutend grösser als der von Wasser (pK_b -Wert = 15,75). Dieses hat einen pH-Wert von 7. Durch Zusatz einer noch schwächeren Base (als Wasser) wird der pH nicht verändert.
- e. Der pK_b -Wert (= 15,37) der NO_3 -lonen ist grösser als der pK_s -Wert (= 2,17) der $[Fe(H_2O)_6]^{3+}$ -lonen (= hydratisierten Eisenionen). Demzufolge ist der pH kleiner als 7.
- f. Das Salz besteht aus NH_4^+ -lonen (pK_s -Wert = 9,25) und Cl^- -lonen (pK_b -Wert ca. 21). Demzufolge ist der pH-Wert kleiner als 7.
- 2. a. Starke **Säure**, pH = log 0,001 = **3,00**
 - b. Schwache **Säure**, pH = $\frac{4,75 \log 0,001}{2}$ = **3,88**
 - c. Starke **Base**, pH = $14 (-\log 0,0002) = 10,30$
 - d. Es handelt sich um eine **äusserst** verdünnte Lösung. Die pH-Berechnung ist in einem solchen Fall enorm schwierig. Die übliche Näherungsformel für starke Säuren ergäbe ein paradoxes Resultat. Daher ist die Antwort: pH = 7,00.
- 3. pOH = 14 pH = 5,5 c(NaOH): $10^{-5,5}$ = 3,2·10⁻⁶ mol/L 1 mol (NaOH): 40,0 g m = 100000*3,2·10⁻⁶*40,0 g = **12,8 g**
- 4. Die Salzsäurelösung wird teilweise durch die Base neutralisiert. Es entsteht eine verdünntere **Salzsäurelösung** mit Kochsalz. Letzeres hat keinen Einfluss auf den pH-Wert und kann daher vernachlässigt werden.

$$H_3O^{+}_{(aq)} + Cl^{-}_{(aq)} + Na^{+}_{(aq)} + HO^{-}_{(aq)} \xrightarrow{} Na^{+}_{(aq)} + Cl^{-}_{(aq)} + 2 H_2O$$

 $pH = -log (0,04/2) = 1,70$

- 5. a. pH = 6,37 + log (23/x) = 7,7 $x = \frac{23}{10^{(7,7-6,37)}} = 1,08 \text{ mmol/L}$
 - b. c(HA) = 9/6 mmol/L = 1,5 mmol/L. Pro Liter Blut werden also 1,5 mmol **Pufferbase** in die entsprechende **Puffersäure** umgewandelt.

pH = 6,37 + log
$$\left(\frac{23-1.5}{1.08+1.5}\right)$$
 = 7,29, Δ pH = 7,29 - 7,70 = -0,41

6. a. Das feste KOH reagiert mit der Essigsäure und wandelt die Hälfte, nämlich 0,5 mol in die konjugierte Base (=CH₃COO¯) um.

Folglich enthält die Lösung: H₂O, CH₃COOH, CH₃COO⁻, K⁺, H₃O⁺ und OH⁻.

b. Da die Lösung ein konjugiertes Säure-Base-Paar enthält (CH_3COOH/CH_3COO^-), ist eine **Pufferlösung** entstanden.

$$pH = 4,75 + log \frac{0,5}{0,5} = 4,75$$

7. Essigsäurekonzentration: $c(CH_3COOH) = (45/60) \text{ mol/L} = 0.75 \text{ mol/L}$

$$V(B) = \frac{0.75 * 50}{1} = 37.5 \text{ mL}$$

8.

	Säure A	Säure B
V(B)	6 mL	10 mL
c(S)	(0,1*6/100) = 0,006 mol/L	(0,1*10/100) = 0,01 mol/L
Äquivalenzpunkt	pH = 7,0 (starke Säure)	pH > 7,0 (schwache Säure)
pH bei V(B) = 0	= - log c(S) (starke Säure)	> - log c(S) (schwache Säure)
pKs-Wert		ca. 3,8